Группа авторов

Sustainable Food Packaging Technology


Скачать книгу

applications. In: Plastics from Bacteria. Microbiology Monographs, vol. 14 (ed. G.Q. Chen), 347–388. Berlin, Heidelberg: Springer.

      67 67 Ayu, R.S., Khalina, A., Harmaen, A.S. et al. (2018). Effect of modified tapioca starch on mechanical, thermal, and morphological properties of PBS blends for food packaging. Polymers 10 (11): 1187.

      68 68 Kim, H.‐S., Kim, H.‐J., Lee, J.‐W., and Choi, I.‐G. (2006). Biodegradability of bio‐flour filled biodegradable poly(butylene succinate) bio‐composites in natural and compost soil. Polymer Degradation and Stability 91 (5): 1117–1127.

      69 69 Chen, G., Li, S., Jiao, F., and Yuan, Q. (2007). Catalytic dehydration of bioethanol to ethylene over TiO2/γ‐Al2O3 catalysts in microchannel reactors. Catalysis Today 125 (1): 111–119.

      70 70 Torres‐Giner, S., Torres, A., Ferrándiz, M. et al. (2017). Antimicrobial activity of metal cation‐exchanged zeolites and their evaluation on injection‐molded pieces of bio‐based high‐density polyethylene. Journal of Food Safety 37 (4): e12348.

      71 71 Braskem. (2014) I'm green polyethylene. Innovation and differentiation for your product.

      72 72 De Castro Morschbacker, A.L. (2010). A method for the production of one or more olefins, an olefin, and a polymer. US 2010/0069691A1, 18 March 2010.

      73 73 Koopmans, R.J. (2013). Polyolefin‐based plastics from biomass‐derived monomers. In: Bio‐Based Plastics (ed. S. Kabasci), 295–310. Chichester: Wiley.

      74 74 Huang, Y.M.L.H., Huang, X.L., Hu, Y.C., and Hu, Y. (2008). Advances of bio‐ethylene. Chinese Journal of Bioprocess Engineering 6: 1–6.

      75 75 LyondellBasell. (2019) Circulen and Circulen Plus.

      76 76 Robertson, G.L. (2015). Trends in Food Packaging. The Journal of the Instutite of Food Science & Technology.

      77 77 Smith, P.B. (2015). Bio‐based sources for terephthalic acid. In: Green Polymer Chemistry: Biobased Materials and Biocatalysis, vol. 1192 (eds. H.N. Cheng, R.A. Gross and P.B. Smith), 453–469. American Chemical Society.

      78 78 Tsusho, T. (2013). Toyota Tsusho Expanding its New Plant‐Derived Plastic Brand Globio. https://www.toyota-tsusho.com/english/press/detail/130326_001840.html#:∼:text=Mineral%20Water%20bottles%2D-,Toyota%20Tsusho%20Expanding%20its%20New%20Plant%2DDerived%20Plastic%20Brand%20GLOBIO,Suntory%20Natural%20Mineral%20Water%20bottles%2D&text=Since%20Bio%2DPET%20is%20made,the%20atmosphere%20even%20when%20burned. (accessed 09 September 2019).

      79 79 SCG Chemicals. (n.d.) The green plastic “Bio‐PET?”". https://www.scgchemicals.com/en/news-media/feature-story/detail/9 (accessed 09 September 2019).

      80 80 Feldman, R.M.R.G.U., Urano, J., Meinhold, P. et al. (2011). Yeast organism producing isobutanol at a high yield. US Patent 8455239, issued 13 September, 2011.

      81 81 Peters, M.T.J.D., Jenni, M., Manzer, L.E., and Hendon, D.E. (2010). Integrated process to selectively convert renewable isobutanol to p‐xylene. US 12/899285, filed October 6, 2010.

      82 82 The Coca‐Cola Company (2015). Great things come in innovative packaging: an introduction to PlantBottle™ packaging.

      83 83 Siracusa, V. and Rosa, M.D. (2018). Sustainable packaging. In: Sustainable Food Systems from Agriculture to Industry, Chapter 8 (ed. C.M. Galanakis), 275–307. Academic Press.

      84 84 Pellis, A., Haernvall, K., Pichler, C.M. et al. (2016). Enzymatic hydrolysis of poly(ethylene furanoate). Journal of Biotechnology 235: 47–53.

      85 85 Weinberger, S., Canadell, J., Quartinello, F. et al. (2017). Enzymatic degradation of poly(ethylene 2,5‐furanoate) powders and amorphous films. Catalysts 7 (11): 318.

      86 86 Rosenboom, J.‐G., Hohl, D.K., Fleckenstein, P. et al. (2018). Bottle‐grade polyethylene furanoate from ring‐opening polymerisation of cyclic oligomers. Nature Communications 9 (1): 2701.

      87 87 Kasmi, N., Papageorgiou, G.Z., Achilias, D.S., and Bikiaris, D.N. (2018). Solid‐state polymerization of poly(ethylene Furanoate) biobased polyester, II: an efficient and facile method to synthesize high molecular weight polyester appropriate for food packaging applications. Polymers 10 (5): 471.

      88 88 Avantium. (n.d.) FDCA‐From plant based materials to FDCA and PEF. https://www.avantium.com/yxy/products-applications/ (accessed 09 September 2019).

      89 89 Cruz‐Izquierdo, Á., van den Broek, L.A.M., Serra, J.L. et al. (2015). Lipase‐catalyzed synthesis of oligoesters of 2,5‐furandicarboxylic acid with aliphatic diols. Pure and Applied Chemistry 87 (1): 59–69.

      90 90 Jiang, Y., Woortman, A.J.J., Alberda van Ekenstein, G.O.R. et al. (2014). Enzymatic synthesis of biobased polyesters using 2,5‐bis(hydroxymethyl)furan as the building block. Biomacromolecules 15 (7): 2482–2493.

      91 91 Rudnik, E. (2013). Compostable polymer properties and packaging applications. In: Plastic Films in Food Packaging, Chapter 13 (ed. S. Ebnesajjad), 217–248. Oxford: William Andrew Publishing.

      92 92 Pawar, P.A. and Purwar, A.H. (2013). Biodegradable polymers in food packaging. American Jorunal of Engineering Research 2 (5): 151–164.

      93 93 García Ibarra, V., Sendón, R., and Rodríguez‐Bernaldo de Quirós, A. (2016). Antimicrobial food packaging based on biodegradable materials. In: Antimicrobial Food Packaging, Chapter 29 (ed. J. Barros‐Velázquez), 363–384. San Diego, CA: Academic Press.

      94 94 Khalid, S., Yu, L., Feng, M. et al. (2018). Development and characterization of biodegradable antimicrobial packaging films based on polycaprolactone, starch and pomegranate rind hybrids. Food Packaging and Shelf Life 18: 71–79.

      95 95 Chan, C.M., Vandi, L.‐J., Pratt, S. et al. (2018). Composites of wood and biodegradable thermoplastics: a review. Polymer Reviews 58 (3): 444–494.

      96 96 Khan, B.M., Niazi, B.K., Samin, G., and Jahan, Z. (2017). Thermoplastic starch: a possible biodegradable food packaging material—a review. Journal of Food Process Engineering 40 (3): e12447.

      97 97 Li, H., Qi, Y., Zhao, Y. et al. (2019). Starch and its derivatives for paper coatings: a review. Progress in Organic Coatings 135: 213–227.

      98 98 Mohanty, A.K., Misra, M., and Hinrichsen, G. (2000). Biofibres, biodegradable polymers and biocomposites: an overview. Macromolecular Materials and Engineering 276–277 (1): 1–24.

      99 99 Zhu, F. (2015). Composition, structure, physicochemical properties, and modifications of cassava starch. Carbohydrate Polymers 122: 456–480.

      100 100 Forssell, P.M., Mikkilä, J.M., Moates, G.K., and Parker, R. (1997). Phase and glass transition behaviour of concentrated barley starch‐glycerol‐water mixtures, a model for thermoplastic starch. Carbohydrate Polymers 34 (4): 275–282.

      101 101 Gaudin, S., Lourdin, D., Le Botlan, D. et al. (1999). Plasticisation and mobility in starch‐sorbitol films. Journal of Cereal Science 29 (3): 273–284.

      102 102 Ma, X. and Yu, J. (2004). The plastcizers containing amide groups for thermoplastic starch. Carbohydrate Polymers 57 (2): 197–203.

      103 103 Nakamura, S. and Tobolsky, A.V. (1967). Viscoelastic properties of plasticized amylose films. Journal of Applied Polymer Science 11 (8): 1371–1386.

      104 104 Kalichevsky, M.T., Blanshard, J.M.V., and Tokargzuk, P.F. (1993). Effect of water content and sugars on the glass transition of casein and sodium caseinate. International Journal of Food Science & Technology 28 (2): 139–151.

      105 105 Kaseem, M., Hamad, K., and Deri, F. (2012). Thermoplastic starch blends: a review of recent works. Polymer Science, Series A 54 (2): 165–176.

      106 106 Wang, Z.‐F., Peng, Z., Li, S.‐D. et al. (2009). The impact of esterification on the properties of starch/natural rubber composite. Composites Science and Technology 69 (11): 1797–1803.

      107 107