Dong, Y., Novo, D.C., Mosquera‐Giraldo, L.I. et al. (2019). Conjugation of bile esters to cellulose by olefin cross‐metathesis: a strategy for accessing complex polysaccharide structures. Carbohydrate Polymers 221: 37–47.
109 109 Chavan, R.B., Rathi, S., Jyothi, V.G.S.S., and Shastri, N.R. (2019). Cellulose based polymers in development of amorphous solid dispersions. Asian Journal of Pharmaceutical Sciences 14 (3): 248–264.
110 110 Petersen, K., Væggemose Nielsen, P., Bertelsen, G. et al. (1999). Potential of biobased materials for food packaging. Trends in Food Science & Technology 10 (2): 52–68.
111 111 Vom Stein, T., Grande, P., Sibilla, F. et al. (2010). Salt‐assisted organic‐acid‐catalyzed depolymerization of cellulose. Green Chemistry 12 (10): 1844–1849.
112 112 Andrade, R., Skurtys, O., and Osorio, F. (2015). Drop impact of gelatin coating formulated with cellulose nanofibers on banana and eggplant epicarps. LWT Food Science and Technology 61 (2): 422–429.
113 113 Azevedo, V.M., Silva, E.K., Gonçalves Pereira, C.F. et al. (2015). Whey protein isolate biodegradable films: influence of the citric acid and montmorillonite clay nanoparticles on the physical properties. Food Hydrocolloids 43: 252–258.
114 114 Ahmad, M., Benjakul, S., Sumpavapol, P., and Nirmal, N.P. (2012). Quality changes of sea bass slices wrapped with gelatin film incorporated with lemongrass essential oil. International Journal of Food Microbiology 155 (3): 171–178.
115 115 Martucci, J.F. and Ruseckaite, R.A. (2010). Biodegradable three‐layer film derived from bovine gelatin. Journal of Food Engineering 99 (3): 377–383.
116 116 Tongnuanchan, P., Benjakul, S., and Prodpran, T. (2014). Structural, morphological and thermal behaviour characterisations of fish gelatin film incorporated with basil and citronella essential oils as affected by surfactants. Food Hydrocolloids 41: 33–43.
117 117 Martucci, J.F., Gende, L.B., Neira, L.M., and Ruseckaite, R.A. (2015). Oregano and lavender essential oils as antioxidant and antimicrobial additives of biogenic gelatin films. Industrial Crops and Products 71: 205–213.
118 118 Fakhouri, F.M., Costa, D., Yamashita, F. et al. (2013). Comparative study of processing methods for starch/gelatin films. Carbohydrate Polymers 95 (2): 681–689.
119 119 Gómez‐Estaca, J., Gómez‐Guillén, M.C., Fernández‐Martín, F., and Montero, P. (2011). Effects of gelatin origin, bovine‐hide and tuna‐skin, on the properties of compound gelatin–chitosan films. Food Hydrocolloids 25 (6): 1461–1469.
120 120 Yilmaz, M.T., Kesmen, Z., Baykal, B. et al. (2013). A novel method to differentiate bovine and porcine gelatins in food products: nanoUPLC‐ESI‐Q‐TOF‐MSE based data independent acquisition technique to detect marker peptides in gelatin. Food Chemistry 141 (3): 2450–2458.
121 121 Nur Azira, T., Man, Y.B.C., Raja Mohd Hafidz, R.N. et al. (2014). Use of principal component analysis for differentiation of gelatine sources based on polypeptide molecular weights. Food Chemistry 151: 286–292.
122 122 Andreuccetti, C., Carvalho, R.A., Galicia‐García, T. et al. (2011). Effect of surfactants on the functional properties of gelatin‐based edible films. Journal of Food Engineering 103 (2): 129–136.
123 123 Díaz, P., Arratia, C., Vásquez, C. et al. (2011). Effect of glycerol on water sorption of bovine gelatin films in the glassy state. Procedia Food Science 1: 267–274.
124 124 Sinha Ray, S. and Bousmina, M. (2005). Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Progress in Materials Science 50 (8): 962–1079.
125 125 Liao, L., Zhang, F.‐L., Lin, W.‐J. et al. (2019). Gluten–starch interactions in wheat gluten during carboxylic acid deamidation upon hydrothermal treatment. Food Chemistry 283: 111–122.
126 126 Pallos, F.M., Robertson, G.H., Pavlath, A.E., and Orts, W.J. (2006). Thermoformed wheat gluten biopolymers. Journal of Agricultural and Food Chemistry 54 (2): 349–352.
127 127 Nataraj, D., Sakkara, S., Hn, M., and Reddy, N. (2018). Properties and applications of citric acid crosslinked banana fibre‐wheat gluten films. Industrial Crops and Products 124: 265–272.
128 128 Zubeldía, F., Ansorena, M.R., and Marcovich, N.E. (2015). Wheat gluten films obtained by compression molding. Polymer Testing 43: 68–77.
129 129 Bootklad, M., Chantarak, S., and Kaewtatip, K. (2016). Novel biocomposites based on wheat gluten and rubber wood sawdust. Journal of Applied Polymer Science 133 (30).
130 130 Tuntachon, S., Sukolrat, A., Numnuam, A., and Kaewtatip, K. (2019). Effect of kaolin content and sonication on the properties of wheat gluten composites. Powder Technology 351: 66–70.
131 131 Chen, L., Reddy, N., Wu, X., and Yang, Y. (2012). Thermoplastic films from wheat proteins. Industrial Crops and Products 35 (1): 70–76.
132 132 Guilbert, S., Gontard, N., Morel, M.H. et al. (2002). Formation and properties of wheat gluten films and coatings. In: Protein‐Based Films and Coatings (ed. A. Gennadios), 69–122. CRC Press.
133 133 Cho, S.W., Gällstedt, M., Johansson, E., and Hedenqvist, M.S. (2011). Injection‐molded nanocomposites and materials based on wheat gluten. International Journal of Biological Macromolecules 48 (1): 146–152.
134 134 Zárate‐Ramírez, L.S., Romero, A., Martínez, I. et al. (2014). Effect of aldehydes on thermomechanical properties of gluten‐based bioplastics. Food and Bioproducts Processing 92 (1): 20–29.
135 135 Angellier‐Coussy, H., Torres‐Giner, S., Morel, M.H. et al. (2008). Functional properties of thermoformed wheat gluten/montmorillonite materials with respect to formulation and processing conditions. Journal of Applied Polymer Science 107 (1): 487–496.
136 136 Koshy, R.R., Mary, S.K., Thomas, S., and Pothan, L.A. (2015). Environment friendly green composites based on soy protein isolate – a review. Food Hydrocolloids 50: 174–192.
137 137 Rani, S. and Kumar, R. (2019). A review on material and antimicrobial properties of soy protein isolate film. Journal of Polymers and the Environment 27 (8): 1613–1628.
138 138 Wihodo, M. and Moraru, C.I. (2013). Physical and chemical methods used to enhance the structure and mechanical properties of protein films: a review. Journal of Food Engineering 114 (3): 292–302.
139 139 Kasaai, M.R. (2018). Zein and zein‐based nano‐materials for food and nutrition applications: a review. Trends in Food Science & Technology 79: 184–197.
140 140 Shukla, R. and Cheryan, M. (2001). Zein: the industrial protein from corn. Industrial Crops and Products 13 (3): 171–192.
141 141 Sun, H., Shao, X., Jiang, R. et al. (2018). Mechanical and barrier properties of corn distarch phosphate‐zein bilayer films by thermocompression. International Journal of Biological Macromolecules 118: 2076–2081.
142 142 Anderson, T.J. and Lamsal, B.P. (2011). REVIEW: zein extraction from corn, corn products, and coproducts and modifications for various applications: a review. Cereal Chemistry 88 (2): 159–173.
143 143 Spasojević, L., Katona, J., Bučko, S. et al. (2019). Edible water barrier films prepared from aqueous dispersions of zein nanoparticles. LWT 109: 350–358.
144 144 Altan, A., Aytac, Z., and Uyar, T. (2018). Carvacrol loaded electrospun fibrous films from zein and poly(lactic acid) for active food packaging. Food Hydrocolloids 81: 48–59.
145 145 Chen, X., Cui, F., Zi, H. et al. (2019). Development and characterization of a hydroxypropyl starch/zein bilayer edible film. International Journal of Biological Macromolecules 145: 1175–1182.
146 146 Qian, J., Ma, J., Su, J. et al. (2016). PHBV‐based ternary composite by intermixing of magnesium calcium phosphate nanoparticles and zein: in vitro bioactivity, degradability and cytocompatibility. European Polymer Journal 75: 291–302.
147 147 Kinsella, J.E. and Morr, C.V. (1984). Milk proteins: physicochemical and functional properties. Critical Reviews in Food Science and Nutrition 21 (3): 197–262.
148 148