alt="images"/>
Abb. 2.19 Die drei Gleitsysteme auf nur einer Gleitebene im hdp Gitter. Die rot markierten dichtest gepackten Ebenen sind kris-tallographisch identische Gleitebenen. Die dichtest gepackten Richtungen sind blau markiert. Die Atome an der Versetzungsfront springen dabei um einen Abstand direkt aneinandergrenzender Atome.
Abb. 2.20 Zeichnung zur Erläuterung des Schmid’schen Schubspannungsgesetzes (a). Dabei ist A (rot) eine Gleitebene, b die Richtung des Burgersvektors in dieser Gleitebene (Gleitrichtung, blau) und N die Ebenennormale der Gleitebene A. (b) Sichtbare Gleitebenenstufen (oben im Bild) an einer einkristallinen polierten Zugprobe. An diesen Stufen ist der Austritt Tausender Versetzungen auf Gleitebenen an der Oberfläche sichtbar. Gemäß Schmid’schem Schubspannungsgesetz sind die Gleitebenen aktiv, deren Neigung nahe 45° zur Normalkraft F liegt, auf denen also die größten Schubspannungen wirken.
Im hdp Gitter gibt es nur eine Gleitebene (001) mit drei Gleitrichtungen ⟨100⟩, ⟨010⟩ und ⟨110⟩. Das ergibt drei Gleitsysteme in nur dieser einen Gleitebene (Abb. 2.19).
Bei angelegter Normalkraft F (z. B. Zugkraft) lässt sich die auf ein Gleitsystem wirkende Schubspannung gemäß dem Schmid’schen Schubspannungsgesetz berechnen (Abb. 2.20).
Die Scherkraft Fb auf der Gleitebene A in Richtung des Burgersvektors b ergibt sich zu:
Die Schubspannung τ auf der Gleitebene A in Richtung des Burgersvektors b ist:
Mit
und der Normalspannung
ergibt sich durch Einsetzen das Schmid’sche Schubspannungsgesetz
Die Schubspannung t wird maximal, wenn die Winkel a und ß den Wert von 45° annehmen. Dann gilt
Die Gleitsysteme, die sehr nahe bei dieser Orientierung der maximalen Schubspannung liegen, werden (als erste) aktiviert. In kfz und krz Strukturen mit ihren vielen Gleitsystemen ist die Wahrscheinlichkeit, dass auf eines oder mehrere dieser Gleitsysteme bei Einwirkung einer äußeren Kraft F eine hohe Schubspannung τ wirkt, relativ hoch. In hdp Strukturen mit ihren wenigen Gleitsystemen ist diese Wahrscheinlichkeit eher gering. Auf Gleitsystemen ohne oder mit geringer Schubspannungskomponente ist plastische Verformung schwierig. Daher sind hdp Strukturen i. Allg. schlecht plastisch verformbar.
Im kfz Gitter haben die Atome aufgrund der Stapelfolge der {111}-Gleitebenen die Möglichkeit, statt in ⟨110⟩-Richtung auch in eine ⟨112⟩-Richtung zu springen. Man spricht dann nicht von einer vollständigen, sondern von einer partiellen Versetzung. Diese verursacht einen Stapelfehler der dichtest gepackten {111} Ebenen, also statt ABC ABC ABC gibt es nun eine Stapelfolge ABCACA BCA. Die rot markierte Ebene A vom Typ {111} soll dabei die Gleitebene der Versetzung sein. Bei drei übereinander folgenden Stapelfehlern spricht man von einem Zwillingsfehler. Solche Stapel-und Zwillingsfehler sind typisch für die kfz Austenitstruktur von rostfreiem ChromNickel-Edelstahl, aber auch für plastisch verformte Ausscheidungen der intermetallischen Phase Ni3Al mit L12-Struktur in Nickelbasis-Superlegierungen, die auf der kfz Struktur basieren, oder in Formgedächtnislegierungen aus Nitinol (NiTi). Abbildung 2.21 zeigt Stapelfehler in Ni3Al-Ausscheidungen von Turbinenschaufeln.
In Formgedächtnislegierungen wie Nitinol (NiTi) ist die sogenannte Zwillingsbildung ein wichtiger plastischer Verformungsmechanismus bei Raumtemperatur, wenn die sogenannte martensitische Phase vorliegt. Wird die Legierung erwärmt, so dass sich die martensitische Struktur in eine austenitische Struktur umwandelt, verschwinden die durch mechanische Verformung erzeugten Zwillinge wieder und damit auch die plastische Verformung, bevor die Legierung durch Abkühlen wieder in den martensitischen Zustand übergeht. Die Legierung hat sich an ihre ursprüngliche Form vor der plastischen Verformung ,,erinnert“.
Abb. 2.21 Drei Stapelfehler in Ni3Al-Ausscheidungen einer einkristallinen Nickelbasis-Superlegierung für Turbinenschaufeln nach Verformung bei 950 °C (flächige Streifenmuster in der linken Aufnahme mit dem Transmissionselektronenmikroskop TEM mit Einstrahlrichtung [001]). Die Partialversetzung, die den Stapelfehler oben links verursacht hat, ist auf einer (111)-Ebene in die Ausscheidung eingedrungen, hat dann die Gleitebene gewechselt und die Ni3Al-Ausscheidung über eine (111)-Ebene wieder verlassen. Die Partialversetzung, die den Stapelfehler unten rechts hinterlassen hat, ist komplett auf einer (111)-Ebene durch die Ausscheidung durchgelaufen und hat einen großen Stapelfehlerbereich hinterlassen. Die Partialversetzung unten links ist noch innerhalb der Ni3Al-Ausscheidung sichtbar. Sie befindet sich aufderGleitebene (111) und erzeugt gerade einen Stapelfehler. Damit sind alle vier Gleitebenen an der plastischen Verformung bei dieser hohen Temperatur beteiligt. In der rechten Aufnahme wurde die Probe so gekippt, dass der Elektronenstrahl parallel zur [011] Richtung liegt und zwei der vier Gleitebenen, nämlich (111) und (111), auf Kante stehen. So konnten alle vier Gleitebenen vom Typ {111} eindeutig identifiziert werden.
Bei hohen Temperaturen wird die plastische Verformung verstärkt durch Diffusion. Dabei diffundieren die Atome und nehmen neue Plätze ein, um der äußeren mechanischen Spannung auszuweichen. Die Diffusion erfolgt sehr stark entlang der Korngrenzen, wo eine größere Unordnung als im Kristallgitter und damit mehr Platz für die Atome vorliegt. Das ist der Grund, warum im heißen Bereich einer Flugzeug- oder Gasturbine direkt hinter der Brennkammer einkristalline Turbinenschaufeln ohne Korngrenzen verwendet werden.
2.6 Zusammenhang zwischen Gitterstruktur und plastischer Verformbarkeit
Metalle mit der Gitterstruktur kfz (Gold, Silber, Aluminium, Kupfer, Blei, austeni-tischer Stahl) sind plastisch am leichtesten verformbar. Sie haben eine sehr hohe Packungsdichte. Die Wahrscheinlichkeit, dass eine der vier Gleitebenen und damit eines der zwölf Gleitsysteme entsprechend dem Schmid’schen Schubspannungsgesetz günstig zur Lastachse orientiert ist und unter hoher Schubspannung steht, ist sehr hoch.
Metalle mit der Gitterstruktur krz (ferritischer Stahl, Wolfram, Chrom, Molybdän) haben zwar auch viele Gleitebenen und Gleitsysteme, aber eine geringere Packungsdichte. Sie sind plastisch etwas schwieriger zu verformen und damit fester als kfz Metalle, aber insgesamt immer noch recht gut umformbar.
Metalle mit der Gitterstruktur hdp (Titan, Magnesium) besitzen zwar wie kfz Metalle ebenfalls die größtmögliche Packungsdichte, haben aber nur eine Gleitebene. Die Wahrscheinlichkeit, dass diese Gleitebene günstig (45°) zur Lastachse orientiert ist und dort hohe Schubspannungen wirken können,