Analysis, gewöhnliche Differentialgleichungen, Funktionentheorie, stochastische Prozesse – das alles klingt nach fortgeschrittener Mathematik. Und das ist es auch. Die Themen dieses Buchs bauen auf mathematischen Methoden aus der linearen Algebra und der eindimensionalen Analysis auf. Naturgemäß können nicht alle Grundlagen ausführlich erläutert werden: Das Buch hätte dann mindestens den doppelten Umfang. Ich gehe daher davon aus, dass Sie den größten Teil der benötigten Grundlagenmathematik schon kennen. Dazu gehören die Grundbegriffe der mathematischen Sprache, neben den üblichen Rechensymbolen auch die logischen Zeichen
Keine Panik! Die für dieses Buch wichtigsten Begriffe und Methoden aus diesen Bereichen werde ich in diesem Kapitel kurz erläutern. Falls Sie darüber hinaus neugierig geworden sind, wie das alles im Detail aussieht, können Sie das zum Beispiel im ersten Band »Mathematik für Ingenieure 1 für Dummies« nachlesen.
Grundlagen aus der linearen Algebra
Das Rechnen mit Vektoren und Matrizen spielt für die mehrdimensionale Analysis eine ähnliche Rolle wie die Grundrechenarten für die eindimensionale Analysis. Anstelle der reellen Zahlen aus
Vektor- und Matrizenrechnung
In diesem Buch werden überwiegend die beiden reellen Vektorräume
Zwischen Spaltenvektoren
und Zeilenvektoren
Die Vektoraddition ist kommutativ und assoziativ.
Jeden reellen Vektor können Sie mit einer beliebigen reellen Zahl
Vektoraddition und skalare Multiplikation werden auch für reelle Zeilenvektoren komponentenweise definiert.
Mit Hilfe des Standardskalarprodukts können Sie Winkel zwischen zwei Vektoren
definieren und die euklidische Norm oder Länge eines Vektors
Für beliebige Vektoren
das Standardskalarprodukt der Vektoren
Die euklidische Norm eines Vektors