Peter W. Atkins

Physikalische Chemie


Скачать книгу

      (2.17)image

      Aus dieser Beziehung folgt ein einfacher Weg zur Bestimmung der Wärmekapazität einer Substanz: Dem System wird eine bekannte Wärmemenge zugeführt (zum Beispiel in Form von elektrischer Energie) und der resultierende Temperaturanstieg wird registriert. Die Wärmekapazität bei konstantem Volumen ergibt sich dann als Verhältnis der zugeführten Wärmemenge zum Betrag des Temperaturanstiegs, (qv/ΔT).

      Eine große Wärmekapazität bedeutet für den betreffenden Stoff, dass die Zufuhr einer bestimmten Wärmemenge nur eine relativ kleine Temperaturänderung erzeugen kann (der Stoffhat eine große „Wärmeaufnahmefähigkeit“). Folglich kann man im Fall einer unendlich hohen Wärmekapazität einem Stoff unendlich viel Wärme zuführen, ohne dass die geringste Temperaturerhöhung auftritt. Beispiele für solche Fälle sind Phasenübergänge. Ein Beispiel ist Wasser am Siedepunkt: Die gesamte zugeführte Wärme wird für die endotherme Verdampfung verbraucht, die Temperatur des Systems steigt dabei nicht an. An diesem Punkt ist die Wärmekapazität des Wassers also unendlich hoch. Die Eigenschaften der Wärmekapazität in der Umgebung von Phasenübergängen werden wir in Abschnitt 4.2.3 ausführlicher behandeln.

      ■ Das Wichtigste in Kürze: Die bei konstantem Druck in Form von Wärme auf das System übertragene Energie ist gleich der Änderung seiner Enthalpie. (a) Enthalpieänderungen werden in einem Kalorimeter bei konstantem Druck untersucht. (b) Die Wärmekapazität bei konstantem Druck ist die Steigung der Enthalpie als Funktion der Temperatur.

image

      Definition der Enthalpie

      Die Enthalpie H ist als

      definiert, wobei p der Druck und V das Volumen des Systems sind. Da U, p und V Zustandsfunktionen sind, ist auch die Enthalpie eine Zustandsfunktion. Wie für jede Zustandsfunktion gilt auch hier, dass die Änderung der Enthalpie während eines Prozesses nur vom Ausgangs- und Endzustand des Systems abhängt und nicht vom Weg zwischen beiden.

      Für eine messbare Änderung ist

       Begründung 2-1 Die Beziehung ΔH = qp

      Allgemein wird bei einer infinitesimalen Zustandsänderung U zu U + dU, p zu p + dp und V zu V + dV. Demzufolge wird nach Gl. [2-18] aus H = U + pV

image

      Der letzte Term dieses Ausdrucks ist ein Produkt zweier infinitesimaler Größen, wir können ihn vernachlässigen. Wenn wir auf der rechten Seite U + pV = H einsetzen, erhalten wir für die Änderung von H

image

      und durch Subtraktion von H aufbeiden Seiten

image

      Mit der bekannten Beziehung dU = dq + dw folgt daraus

image

      Wenn sich das System im mechanischen Gleichgewicht mit seiner Umgebung befindet und nur Volumenarbeit verrichtet, können wir mithilfe von dw = – p dV zusammenfassen:

image

      Nun fordern wir noch, dass die Erwärmung des Systems bei konstantem Druck erfolgen soll (dp = 0) und erhalten so

image

      In Worten besagt Gl. (2-19): Wenn ein System bei konstantem Druck gehalten wird und nur Volumenarbeit verrichten kann, ist die Enthalpieänderung gleich der zugeführten Wärmemenge. Wenn man beispielsweise einer Heizspirale in einem Becherglas mit Wasser eine elektrische Energie von 36 kJ zuführt, wächst dadurch die Enthalpie des Wassers um diese 36 kJ; wir schreiben ΔH =+36 kJ.

      Die Messung von Enthalpieänderungen