Группа авторов

The Esophagus


Скачать книгу

communications. In: Sperelakis N, Cole W, eds. Cell interactions and gap junctions. CRC Press; 1989. p. 211–224.

      260 260 Kannan MS, Jager LP, Daniel EE. Electrical properties of smooth muscle cell membrane of opossum esophagus. Am J Physiol 1985; 248:G342–6.

      261 261 Nelson DO, Mangel AW. Acetylcholine induced slow‐waves in cat esophageal smooth muscle. Gen Pharmacol 1979; 10:19–20.

      262 262 Helm JF, Bro SL, Dodds WJ, et al. Myogenic oscillatory mechanism for opossum esophageal smooth muscle contractions. Am J Physiol 1991; 261:G377–83.

      263 263 Salapatek AM, Ji J, Diamant NE. Ion channel diversity in the feline smooth muscle esophagus. Am J Physiol Gastrointest Liver Physiol 2002; 282:G288–99.

      264 264 Muinuddin A, Xue S, Diamant NE. Regional differences in the response of feline esophageal smooth muscle to stretch and cholinergic stimulation. Am J Physiol Gastrointest Liver Physiol 2001; 281:G1460–7.

      265 265 Szymanski PT, Chacko TK, Rovner AS, et al. Differences in contractile protein content and isoforms in phasic and tonic smooth muscles. Am J Physiol 1998; 275:C684–92.

      266 266 Biancani P, Sohn UD, Rich HG, et al. Signal transduction pathways in esophageal and lower esophageal sphincter circular muscle. Am J Med 1997; 103:23S–28S.

      267 267 Cao W, Sohn UD, Bitar KN, et al. MAPK mediates PKC‐dependent contraction of cat esophageal and lower esophageal sphincter circular smooth muscle. Am J Physiol Gastrointest Liver Physiol 2003; 285:G86–95.

      268 268 Liu J, Puckett JL, Takeda T, et al. Crural diaphragm inhibition during esophageal distension correlates with contraction of the esophageal longitudinal muscle in cats. Am J Physiol Gastrointest Liver Physiol 2005; 288:G927–32.

      269 269 Yamamoto Y, Liu J, Smith TK, et al. Distension‐related responses in circular and longitudinal muscle of the human esophagus: an ultrasonographic study. Am J Physiol 1998; 275:G805–11.

      270 270 Crist J, Gidda J, Goyal RK. Role of substance P nerves in longitudinal smooth muscle contractions of the esophagus. Am J Physiol 1986; 250:G336–43.

      271 271 Zhang Y, Paterson WG. Nitric oxide contracts longitudinal smooth muscle of opossum oesophagus via excitation‐contraction coupling. J Physiol 2001; 536:133–40.

      272 272 Paterson WG, Kolyn DM. Esophageal shortening induced by short‐term intraluminal acid perfusion in opossum: a cause for hiatus hernia? Gastroenterology 1994; 107:1736–40.

      273 273 White RJ, Zhang Y, Morris GP, et al. Esophagitis‐related esophageal shortening in opossum is associated with longitudinal muscle hyperresponsiveness. Am J Physiol Gastrointest Liver Physiol 2001; 280:G463–9.

      274 274 Vanek AW, Diamant NE. Responses of the human esophagus to paired swallows. Gastroenterology 1987; 92:643–50.

      275 275 Hellemans J, Vantrappen G, Janssens J. Electromyography of the esophagus. 4. The deglutitive inhibition. In: Diseases of the esophagus. New York: Springer‐Verlag; 1974. p. 280–284.

      276 276 Ask P, Tibbling L. Effect of time interval between swallows on esophageal peristalsis. Am J Physiol 1980; 238:G485–90.

      277 277 Shaker A, Stoikes N, Drapekin J, et al. Multiple rapid swallow responses during esophageal high‐resolution manometry reflect esophageal body peristaltic reserve. Am J Gastroenterol 2013; 108:1706–12.

      278 278 Fornari F, Bravi I, Penagini R, et al. Multiple rapid swallowing: a complementary test during standard oesophageal manometry. Neurogastroenterol Motil 2009; 21:718–e41.

      279 279 Shi G, Pandolfino JE, Zhang Q, et al. Deglutitive inhibition affects both esophageal peristaltic amplitude and shortening. Am J Physiol Gastrointest Liver Physiol 2003; 284:G575–82.

      280 280 Gyawali CP, Patel A. Esophageal motor function: technical aspects of manometry. Gastrointest Endosc Clin N Am 2014; 24:527–43.

      281 281 Mittal RK, Balaban DH. The esophagogastric junction. N Engl J Med 1997; 336:924–32.

      282 282 Kwiatek MA, Pandolfino JE, Kahrilas PJ. 3D‐high resolution manometry of the esophagogastric junction. Neurogastroenterol Motil 2011; 23:e461–9.

      283 283 Kwok H Marriz Y, Al‐Ali S, Windsor JA. Phrenoesophageal ligament re‐visited. Clin Anat 1999; 12:164–170.

      284 284 Kahrilas PJ, Lin S, Chen J, et al. The effect of hiatus hernia on gastro‐oesophageal junction pressure. Gut 1999; 44:476–82.

      285 285 Apaydin N, Uz A, Evirgen O, et al. The phrenico‐esophageal ligament: an anatomical study. Surg Radiol Anat 2008; 30:29–36.

      286 286 Tierney BJ, Iqbal A, Awad Z, et al. Sub‐diaphragmatic fascia: role in the recurrence of hiatal hernias. Dis Esophagus 2006; 19:111–3.

      287 287 Marchand P. The anatomy of esophageal hiatus of the diaphragm and the pathogenesis of hiatus herniation. J Thorac Surg 1959; 37:81–92.

      288 288 Dobbins EG, Feldman JL. Brainstem network controlling descending drive to phrenic motoneurons in rat. J Comp Neurol 1994; 347:64–86.

      289 289 Niedringhaus M, Jackson PG, Pearson R, et al. Brainstem sites controlling the lower esophageal sphincter and crural diaphragm in the ferret: a neuroanatomical study. Auton Neurosci 2008; 144:50–60.

      290 290 Young RL, Page AJ, Cooper NJ, et al. Sensory and motor innervation of the crural diaphragm by the vagus nerves. Gastroenterology 2010; 138:1091–101 e1–5.

      291 291 Jackson AJ. The spiral constrictor of the gastroesophageal junction. Am J Anat 1978; 151:265–75.

      292 292 Apaydin N UA, Elhan A, Loukas M, Tubbs RS. Does an anatomical sphincter exist in the distal esophagus? Surg Radiol Anat 2008; 30:11–16.

      293 293 Brasseur JG, Ulerich R, Dai Q, et al. Pharmacological dissection of the human gastro‐oesophageal segment into three sphincteric components. J Physiol 2007; 580:961–75.

      294 294 Miller L, Dai Q, Vegesna A, et al. A missing sphincteric component of the gastro‐oesophageal junction in patients with GORD. Neurogastroenterol Motil 2009; 21:813–e52.

      295 295 McCray WH J, Chung C, Parkman HP, Miller LS. Use of simultaneous high‐resolution endoluminal sonography (HRES) and manometry to characterize high pressure zone of distal esophagus. Dig Dis Sci 2000; 45:1660–1666.

      296 296 Wheeler CB, Kohatsu S. Canine gastric sling fibers: contractile properties. Am J Surg 1980; 139:175–82.

      297 297 Beck CS, Osa T. Membrane activity in guinea pig gastric sling muscle: a nerve‐dependent phenomenon. Am J Physiol 1971; 220:1397–403.

      298 298 Preiksaitis HG, Diamant NE. Regional differences in cholinergic activity of muscle fibers from the human gastroesophageal junction. Am J Physiol 1997; 272:G1321–7.

      299 299 Friedland GW, Kohatsu S, Lewin K. Comparative anatomy of feline and canine gastric sling fibers. Analogy to human anatomy. Am J Dig Dis 1971; 16:493–507.

      300 300 Lendrum FC. Anatomic features of the cardiac orifice of the stomach (with special reference to cardiospasm). Arch Intern Med 1937; 59:474–511.

      301 301 Gahagan T. The function of the musculature of the esophagus and stomach in the esophagogastric sphincter mechanism. Surg Gynecol Obstet 1962; 114:293–303.

      302 302 Hill LD, Kozarek RA, Kraemer SJ, et al. The gastroesophageal flap valve: in vitro and in vivo observations. Gastrointest Endosc 1996; 44:541–7.

      303 303 Korn O, Csendes A, Burdiles P, et al. Anatomic dilatation of the cardia and competence of the lower esophageal sphincter: a clinical and experimental study. J Gastrointest Surg 2000; 4:398–406.

      304 304 Gordon C, Kang JY, Neild PJ, et al. The role of the hiatus hernia in gastro‐oesophageal reflux disease. Aliment Pharmacol Ther 2004; 20:719–32.

      305 305 Fujiwara Y, Nakagawa K, Kusunoki M, et al. Gastroesophageal reflux after distal gastrectomy: possible significance of the angle of His. Am J Gastroenterol 1998; 93:11–5.

      306 306 Ismail T, Bancewicz J, Barlow J. Yield pressure, anatomy of the